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Ligand Radical Localization in a Nonsymmetric One-Electron Oxidized
NiII Bis-phenoxide Complex

Tim Storr,[a, b] Pratik Verma,[a] Yuichi Shimazaki,*[c] Erik C. Wasinger,[d] and
T. Daniel P. Stack*[a]

The interplay of electronic structure and reactivity in tran-
sition-metal complexes is an area of considerable research
effort.[1,2] The cooperative effect of redox-active ligands and
metal sites in enzymatic systems,[3] and more recently in syn-
thetic systems,[4] adds significant flexibility to catalyst func-
tion. Depending on the relative energies of the redox-active
orbitals, metal complexes with proradical ligands can exist
in a limiting description as a metal–ligand radical (Mn+(LC))
or a high-valent metal complex (M(n+1)+(L�)). In certain
cases, subtle changes to the system through variation of the
ligand field, or temperature is sufficient to shift the oxida-
tion locus.[5,6] Recent work in this area has focused on bis-
(salicylidene)diamine complexes 1–3 (Scheme 1).[6–11] The
one-electron oxidized Ni derivatives exist in the ligand radi-
cal form NiII ACHTUNGTRENNUNG(LC�) in solution and the solid state, however
the addition of exogenous ligands to NiII ACHTUNGTRENNUNG(LC�) in solution re-
sults in a shift in the oxidation locus to the NiIII ACHTUNGTRENNUNG(L2�)
form.[7–10] The oxidized Cu derivative of 1 exists as the high-
valent metal complex in the solid state. In solution this com-
plex exhibits temperature-dependent valence tautomerism
between the ligand radical and high-valent metal forms, demonstrating the nearly isoenergetic nature of these two

species.[6]

Oxidation studies to date have centered on symmetric
bis(salicylidene)diamine complexes, resulting in full delocali-
zation of the radical over the ligand framework. Interesting-
ly, recent work has shown that the oxidized Pd analogue of
1 exhibits partial radical localization on one of the two phe-
nolates as this metal ion limits coupling between the redox-
active ligands.[12] Intrigued by this example, we have synthe-
sized the Ni analogue of a Salalen ligand 4,[13] a nonsymmet-
ric variant of 1.[14] We hypothesized that the reduced amino-
phenolate of 4 would undergo a one-electron oxidation at a
lower potential than the iminophenolate, resulting in a local-
ized ligand radical complex. Preferential redox tuning of
phenolate ligands has been demonstrated previously in a
functional model of galactose oxidase.[15]

Compound 4 exhibits two reversible redox couples by
cyclic voltammetry (E1/2

1 =0.13 V and E1/2
2 =0.56 V vs. Fc+/

Fc; Fc: ferrocene; see Figure S1 in the Supporting Informa-
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Scheme 1. Nickel bis-phenoxide complexes.
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tion). The first oxidation for 4 occurs at a potential 0.3 V
lower than that for 1, and compares well with the electro-
chemistry of a Cu tetrahydrosalen complex.[16] This is attrib-
uted to oxidation of the more electron-rich aminophenolate.
Treatment of 4 in CH2Cl2 with one equivalent of the oxi-
dants AgSbF6 (E1/2 =++0.65 V vs. Fc+/Fc), thianthrenyl radi-
cal [thianthrene]+ C SbF6

� (E1/2 =++0.89 V vs. Fc+/Fc), or
(NH4)2Ce ACHTUNGTRENNUNG(NO3)6 results in an immediate color change from
red-brown to green, signifying formation of 4+ . AgSbF6 as
the chemical oxidant provides crystals of 4+ SbF6

� suitable
for X-ray analysis (Figure 1).[13]

The structures of 4 (see Figure S2 in the Supporting Infor-
mation) and 4+ possess a slightly distorted square-planar ge-
ometry about the Ni center, similar to 1 and 1+ . While the
coordination sphere of 1 contracts symmetrically upon oxi-
dation to 1+ ,[10] the Ni coordination sphere of 4+ is nonsym-
metric (Table 1), with considerable lengthening of the ami-

nophenolate Ni�O1 bond by 0.04 � in comparison to 4. The
lengthening of the Ni�O1 bond is consistent with a decrease
in electron-donating ability of a phenoxyl ligand relative to
that of phenolate,[17,18] indicating localized oxidation of the
aminophenolate. A similar nonsymmetric coordination envi-
ronment was observed in the X-ray structure of the Pd ana-
logue of 1+ .[12] DFT calculations[19] of 4 and 4+ reproduce
the observed coordination sphere asymmetry in the oxidized
form (Table 1). Interestingly, an elongation of the C�O
bond lengths is observed upon oxidation of 4 to 4+ , instead

of the contraction expected for a phenoxyl radical with
semi-quinone character.[17, 20]

The EPR spectum of 4+ in CH2Cl2 at 77 K exhibits a
broad (S=1/2) signal with a giso =2.018 (Figure 2 a), indicat-
ing that the unpaired electron is ligand-based. The measured

g value is lower than that for 1+ (giso =2.045)[10] indicating a
smaller contribution of metal d orbitals (mostly dyz) to the
SOMO of 4+ , and greater ligand-radical character. This
result corresponds well with the lower calculated Ni spin
density (Figure 2 inset) for 4+ (5%), in comparison to that
for 1+ (10 %).[21] These results suggest that the electronic
coupling between the two redox-active phenolates, mediat-
ed, presumably through a hole transfer superexchange
mechanism involving the Ni dyz orbital,[2,10,12] is reduced sub-
stantially in 4+ as compared to that in 1+ (vide infra).

Addition of 20 equivalents of pyridine to 4+ at 233 K and
subsequent cooling to 77 K results in an anisotropic EPR
pattern (Figure 2 b) that is consistent with formation of a
NiIII species [4(py)2]

+ (gx =gy = 2.230, gz =2.032, Az =19 �
10�4 cm�1, gav =2.16). This result is consistent with modula-
tion of the ligand field upon axial binding of pyridine, and a
consequent shift in the locus of oxidation to form a NiIII

complex.[8–10]

Ni K-edge X-ray absorption spectroscopy (XAS) was
used to further probe the metal oxidation state and structure
of frozen solutions of 4, 4+ , and [4(py)2]

+ (Figure S3 in the

Figure 1. Molecular structure of 4+ SbF6
� (50 % probability ellipsoids).

Selected interatomic distances [�] and angles [8]: Ni1�N1 1.872(5), Ni1�
N2 1.824(5), Ni1�O1 1.883(4), Ni1�O2 1.823(3), C1�O1 1.365(6), C20�
O2 1.329(6), N1�C7 1.472(2), N2�C14 1.283(7); N1-Ni1-N2 86.7(2), O1-
Ni1-O2 84.2(1), N1-Ni1-O1 93.3(2), N2-Ni1-O2 95.3(2).

Table 1. Experimental and calculated (in parentheses) coordination
sphere metrical parameters for the complexes in �.

Ni�O1 Ni�O2 Ni�N1 Ni�N2

4 1.846 (1.876) 1.841 (1.861) 1.845 (1.945) 1.845 (1.877)
4+ 1.883 (1.892) 1.823 (1.836) 1.872 (1.951) 1.824 (1.854)

Figure 2. X-band EPR spectra of 4+ recorded in frozen CH2Cl2 at 77 K
(experimental spectra: solid lines; simulations: dashed lines): a) 1 mm 4+ ,
b) 1 mm 4+ + 20 equiv pyridine. Inset: Calculated spin density plot for
4+ , showing localization of the unpaired electron on the more electron-
rich aminophenolate.
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Supporting Information). The Ni K-edge 1s ! 3d transition,
or pre-edge, is a successful indicator of Ni oxidation state,[22]

and the similar energies of the pre-edge feature for 4
(8332.0 eV) and 4+ (8331.9 eV) are consistent with a NiII ox-
idation state for both complexes. The shift of the pre-edge
to higher energy for [4(py)2]

+ (8332.4 eV) signifies oxidation
to NiIII, matching the EPR results (vide supra).

The UV-Vis-NIR spectra of 4 is typical of a low-spin d8

square-planar metal complex, and changes substantially
upon oxidation to 4+ (Figure 3). The spectrum of 4+ exhib-

its a new intense band at 25 000 cm�1 (9300 m
�1 cm�1), and

low-energy bands at 13 000 cm�1 (3000m
�1 cm�1), 11 300 cm�1

(shoulder; 2700 m
�1 cm�1), and 6500 cm�1 (2000 m

�1 cm�1).
The absence of low-energy transitions (<12 000 cm�1) in 4
and [4(py)2]

+ (see Figure S4 in the Supporting Information)
indicates that the low-energy bands are associated with the
ligand radical. The lowest energy NIR band is predicted by
time-dependent density functional theory (TD-DFT) to be a
phenolate to phenoxyl intervalence charge transfer (IVCT)
transition (Figure 3 inset), and is of much weaker intensity
in comparison to the NIR band for the Class III[23] delocal-
ized mixed-valence complex 1+ (4700 cm�1,
21 500 m

�1 cm�1).[10] This attenuation in NIR band intensity
reflects the limited electronic coupling between the two
redox-active phenolates in 4+ . The intense band at
25 000 cm�1 is assigned to a phenoxyl radical p ! p* transi-
tion.[24] This band is obscured by other intense LMCT transi-
tions in the absorption spectrum of 1+ .[9,11]

The resonance Raman (rR) spectra of 4 and 4+ (Figure 4)
exhibit key differences upon oxidation, consistent with local-
ization of the ligand radical on the Raman timescale. Vibra-

tional modes resonant with both phenoxyl p ! p* and phe-
nolate-NiII LMCT transitions are observable in the spectrum
of 4+ . The features at 1501 and 1581 cm�1 are attributed to
characteristic phenoxyl radical C�O stretching, n7a, and
Cortho�Cmeta stretching, n8a, modes respectively.[25] The rR in-
tensity ratio, IACHTUNGTRENNUNG(n8a)/I ACHTUNGTRENNUNG(n7a) � 1, is often used as a spectral
marker for metal-coordinated phenoxyl radicals with p-me-
thoxy substituents.[24] However, the tert-butyl substituents
employed in this work may minimize the semi-quinoid char-
acter of phenoxyl radicals, and the elongated Ni�O1 bond
length could further influence the enhancement of the n8a

mode.[24,26] A combination of these factors presumably leads
to the reduced intensity of n8a relative to n7a observed in 4+ ;
a similar intensity pattern is reported for a NiII–phenoxyl
radical complex with the same tert-butyl substitution pat-
tern.[27]

The phenolate/phenoxyl radical n8a mode in 1+ [9] is red-
shifted by 22 cm�1 (1625 cm�1 to 1605 cm�1) in comparison
to the phenolate n8a mode in 1,[28] consistent with delocaliza-
tion of the ligand radical for 1+ on the Raman timescale.
The feature at 1615 cm�1 in 4+ , assigned to the phenolate n8a

mode, is only red-shifted by 4 cm�1 in comparison to the cor-
responding feature in 4.[28] These rR results further support
a localized ligand radical description for 4+ .

In summary, we have characterized the electronic struc-
ture of a nonsymmetric one-electron oxidized NiII bis-phen-
oxide complex 4+ . While the symmetric derivative 1+ is a
Class III mixed-valence species, 4+ is best described as a
Class II mixed valence species due to localization of the
ligand radical on the more electron rich amino-phenolate.

Experimental Section

Synthesis of 4+ SbF6
� : Compound 4 (0.097 g, 0.16 mmol) was dissolved in

CH2Cl2 (3 mL), and solid AgSbF6 (0.055 g, 0.16 mmol) was added. A
bright green suspension formed immediately. After 1 h the mixture was
filtered through celite and the solvent was removed in vacuo to afford a
green solid. The material was recrystallized from CH2Cl2/pentane to
afford 4+ SbF6

� as green block-like crystals. Magnetic susceptibility;

Figure 3. Electronic absorption spectra of 0.08 mm solutions of 4 (solid
line) and 4+ (dashed line) in CH2Cl2 at 298 K. Calculated transitions
shown as vertical lines. Inset: TD-DFT assignment (b-HOMO ! b-
LUMO) of the lowest energy NIR transition (5500 cm�1) for 4+ .[13]

Figure 4. Resonance Raman (rR) spectra of 4 (solid line) and 4+ (dashed
line) in CH2Cl2 at 213 K (lex =413 nm). Solvent=*.
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(Evan�s Method) meff =1.6 BM. Elemental analysis (%) calcd for
C36H54N2O2NiSbF6: C 51.40, H 6.47, N 3.33; found: C 51.56, H 6.18, N
3.28.

X-ray details for 4 and 4+ SbF6
� are available in the Supporting Informa-

tion. CCDC-770780 and CCDC-770781 contain the supplementary crys-
tallographic data for this paper. These data can be obtained free of
charge from The Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif Synthetic procedures, X-ray data,
computations, electrochemistry, UV/Vis data, X-ray absorption spectros-
copy, and Raman analysis are available as Supporting Information.
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